Need Custom Examples?
Our team can help develop custom examples for your specific use case.
Contact SupportCode Examples
Practical code examples demonstrating how to implement safety features with the Akioudai Safety SDK
Overview
This page provides practical, ready-to-use code examples for implementing the Akioudai Safety SDK in various scenarios. Each example includes annotations explaining key concepts and best practices.
Example Structure
Each example is structured to be:
- Self-contained and ready to integrate
- Annotated with key concepts
- Optimized for production use cases
- Adaptable to specific requirements
Safety Guardrails Examples
These examples demonstrate how to implement robust safety boundaries and monitoring for AI outputs.
Content Filtering
This example shows how to filter user-generated content for safety issues before processing it with your AI model:
1import { SafetyGuard } from '@akioudai/safety-sdk';23// Initialize the safety guard with content filtering4const guard = new SafetyGuard({5 apiKey: process.env.AKIOUDAI_API_KEY,6 boundaries: ['toxicity', 'hate', 'sexual', 'violence'],7 threshold: 0.85,8 mode: 'filter' // 'filter', 'block', or 'monitor'9});1011async function filterUserContent(content) {12 try {13 // Apply content filtering14 const result = await guard.filter(content, {15 context: {16 audience: 'general',17 domain: 'customer-service'18 }19 });20 21 // Check if content was modified22 if (result.modified) {23 console.log('Content was filtered for safety');24 console.log('Original:', content);25 console.log('Filtered:', result.filteredContent);26 console.log('Issues:', result.issues);27 28 return {29 content: result.filteredContent,30 safe: true,31 modified: true,32 issues: result.issues33 };34 }35 36 return {37 content: content,38 safe: true,39 modified: false40 };41 } catch (error) {42 console.error('Error filtering content:', error);43 return {44 content: 'I cannot process this content due to safety concerns.',45 safe: false,46 error: error.message47 };48 }49}5051// Example usage52const userMessage = "Your message here";53const filteredResult = await filterUserContent(userMessage);54displayMessage(filteredResult.content);
Implementation Notes
- Configure different boundaries based on your content policies
- Adjust the threshold to balance between strictness and usability
- Context information helps improve filtering accuracy
Toxicity Detection
This example implements real-time toxicity monitoring for a chat application:
1import { SafetyGuard } from '@akioudai/safety-sdk';23// Initialize with toxicity detection focus4const toxicityDetector = new SafetyGuard({5 apiKey: process.env.AKIOUDAI_API_KEY,6 boundaries: ['toxicity'],7 threshold: 0.75,8 mode: 'monitor'9});1011// Create a monitoring function12async function monitorForToxicity(conversation) {13 const messages = conversation.getMessages();14 const lastMessage = messages[messages.length - 1];15 16 // Skip if not from user17 if (lastMessage.role !== 'user') return;18 19 const result = await toxicityDetector.monitor(lastMessage.content, {20 realtime: true,21 context: {22 conversationHistory: messages.slice(0, -1).map(m => ({23 role: m.role,24 content: m.content25 }))26 }27 });28 29 if (!result.safe) {30 // Handle toxic content31 conversation.addSystemMessage(32 "I've detected potentially harmful content. Please maintain respectful communication."33 );34 35 // Log the incident36 logSafetyIncident({37 type: 'toxicity',38 score: result.score,39 message: lastMessage.content,40 timestamp: new Date()41 });42 43 // For severe violations, take additional action44 if (result.score > 0.9) {45 notifyModerators({46 conversationId: conversation.id,47 messageId: lastMessage.id,48 violation: result.violations[0]49 });50 }51 }52}5354// Set up monitoring on a chat interface55chatInterface.on('message', message => {56 monitorForToxicity(chatInterface.conversation);57});
Implementation Notes
- Providing conversation history improves contextual understanding
- Implement graduated responses based on severity
- Always log safety incidents for review and improvement
Agent Alignment Examples
Examples showing how to align AI agent behavior with specific objectives and regulatory requirements.
Custom Alignment for Regulated Industries
This example demonstrates how to align an AI agent for use in the financial services industry:
1import { AgentAlignment } from '@akioudai/safety-sdk';23// Define custom alignment objectives for a financial advisor agent4const financialAdvisorAlignment = new AgentAlignment({5 apiKey: process.env.AKIOUDAI_API_KEY,6 objectives: [7 'regulatory_compliance',8 'factual_accuracy',9 'fiduciary_responsibility',10 'risk_disclosure'11 ],12 frameworks: ['sec_regulations', 'finra_guidelines'],13 threshold: 0.9814});1516// Custom regulatory dictionary for finance17const regulatoryDictionary = {18 terms: [19 { term: 'guaranteed returns', alternatives: ['historical performance', 'potential returns'] },20 { term: 'risk-free', alternatives: ['lower-risk', 'historically stable'] },21 { term: 'certain profit', alternatives: ['potential growth', 'investment objective'] }22 ],23 disclosures: [24 'Past performance is not indicative of future results',25 'Investments involve risk and may lose value',26 'This is not financial advice and should not be construed as such'27 ]28};2930// Apply alignment to the model31const alignedModel = await financialAdvisorAlignment.alignAgent(baseModel, {32 customDictionaries: [regulatoryDictionary],33 interventions: {34 onMisalignment: (output, issue) => {35 // Add appropriate financial disclaimer36 const disclaimer = regulatoryDictionary.disclosures.find(d => 37 d.toLowerCase().includes(issue.category.toLowerCase())38 ) || regulatoryDictionary.disclosures[0];39 40 return output + "\n\n*Disclaimer: " + disclaimer + "*";41 }42 }43});4445// Deploy the aligned financial advisor agent46const advisor = new FinancialAdvisorAgent({47 model: alignedModel,48 name: 'InvestmentAssistant',49 description: 'SEC-compliant financial information assistant'50});5152// The agent will now maintain compliance with financial regulations53// when providing information to users
Implementation Notes
- Custom dictionaries can enforce industry-specific terminology
- Intervention handlers enable automatic compliance corrections
- Alignment objectives should reflect regulatory priorities
Runtime Validation Examples
Examples of validating AI behavior during execution to ensure compliance with safety parameters.
Continuous Monitoring
This example shows how to implement continuous runtime validation for an AI service:
1import { RuntimeValidator } from '@akioudai/safety-sdk';23// Initialize runtime validator for continuous monitoring4const validator = new RuntimeValidator({5 apiKey: process.env.AKIOUDAI_API_KEY,6 checkpoints: ['input', 'processing', 'output'],7 metrics: ['consistency', 'safety', 'performance'],8 threshold: 0.99});1011// Create a monitoring wrapper for an AI service12function createMonitoredService(aiService) {13 return {14 async process(input, options) {15 // Create execution context for validation16 const execution = {17 id: generateUniqueId(),18 startTime: Date.now(),19 input: input,20 model: aiService.modelInfo,21 parameters: options,22 output: null23 };24 25 try {26 // Start validation27 validator.startValidation(execution);28 29 // Process input with safe default parameters30 const safeOptions = validator.getSafeParameters(options);31 let output = await aiService.process(input, safeOptions);32 33 // Add output to execution context34 execution.output = output;35 execution.endTime = Date.now();36 37 // Validate output38 const validationResult = await validator.validate(execution, {39 realtime: true,40 callbacks: {41 onViolation: (issue) => {42 console.warn('Validation issue detected:', issue);43 logIssue(execution.id, issue);44 }45 }46 });47 48 // Handle validation results49 if (!validationResult.valid) {50 // Apply automatic corrections if possible51 if (validationResult.corrections) {52 output = validationResult.corrections.output || output;53 }54 55 // For critical issues, block output56 if (validationResult.critical) {57 throw new Error('Critical validation failure: ' + 58 validationResult.issues.map(i => i.description).join(', '));59 }60 }61 62 return {63 result: output,64 validationStatus: validationResult.valid ? 'passed' : 'issues',65 metrics: validationResult.metrics66 };67 } catch (error) {68 // Log error and execution context69 execution.error = error.message;70 execution.endTime = Date.now();71 72 // Complete validation with error73 validator.completeValidation(execution, 'error');74 75 throw error;76 }77 }78 };79}8081// Example usage82const secureImageGenerator = createMonitoredService(imageGenerationService);83const result = await secureImageGenerator.process(84 "Generate an image of a peaceful mountain landscape",85 { width: 1024, height: 768, style: "photorealistic" }86);
Implementation Notes
- Validation at multiple checkpoints provides comprehensive safety coverage
- Include detailed execution context for better validation accuracy
- Implement graduated responses based on issue severity
Regulatory Compliance Examples
Examples of implementing specific regulatory compliance requirements for AI systems.
EU AI Act Compliance
This example demonstrates how to implement EU AI Act compliance for a high-risk AI system:
1import { ComplianceFramework } from '@akioudai/safety-sdk';23// Initialize EU AI Act compliance framework4const euAiAct = new ComplianceFramework({5 apiKey: process.env.AKIOUDAI_API_KEY,6 framework: 'eu_ai_act',7 riskCategory: 'high', // 'minimal', 'limited', 'high', 'unacceptable'8 domain: 'healthcare' // Specify the industry domain9});1011// Set up documentation requirements for high-risk systems12const documentationGenerator = euAiAct.createDocumentationGenerator({13 system: {14 name: 'DiagnosisAssistant',15 version: '1.0.4',16 purpose: 'Supporting clinical diagnosis by analyzing patient data',17 capabilities: ['data analysis', 'pattern recognition', 'decision support'],18 limitations: ['not a replacement for professional judgment', 19 'requires human oversight']20 },21 organization: {22 name: 'Medical AI Solutions',23 contact: 'compliance@medicalai.example',24 address: '123 Innovation Drive, Brussels, Belgium'25 }26});2728// Generate required technical documentation29const technicalDocs = await documentationGenerator.generateTechnicalDocumentation();30console.log('Technical Documentation Sections:', Object.keys(technicalDocs));3132// Perform risk assessment33const riskAssessment = await euAiAct.performRiskAssessment({34 dataDescription: 'Patient health records, medical imaging, lab results',35 dataSources: ['electronic health records', 'radiology information systems'],36 dataRetention: '5 years in compliance with medical records requirements',37 securityMeasures: ['end-to-end encryption', 'access controls', 'audit logs']38});3940// Output risk findings and mitigations41for (const risk of riskAssessment.risks) {42 console.log(`Risk: ${risk.description}`);43 console.log(`Severity: ${risk.severity}`);44 console.log(`Mitigations: ${risk.mitigations.join(', ')}`);45 console.log('---');46}4748// Create conformity assessment checklist49const conformityChecklist = await euAiAct.generateConformityChecklist();50console.log(`Completed: ${conformityChecklist.completedItems.length} of ${conformityChecklist.totalItems}`);5152// Missing requirements53if (conformityChecklist.missingItems.length > 0) {54 console.log('Missing requirements:');55 for (const item of conformityChecklist.missingItems) {56 console.log(`- ${item.requirement}: ${item.description}`);57 }58}5960// Generate official declaration of conformity when ready61if (conformityChecklist.readyForDeclaration) {62 const declaration = await euAiAct.generateDeclarationOfConformity();63 fs.writeFileSync('eu_ai_act_declaration.pdf', declaration.pdf);64 console.log('Declaration of Conformity generated successfully');65}
Implementation Notes
- Risk categorization determines compliance requirements
- Comprehensive documentation is mandatory for high-risk systems
- Risk assessment and mitigation are core requirements
- Conformity assessment must be completed before deployment
Additional Resources
Example Repository
Access our GitHub repository with more extensive examples and full applications.
View repository