SDK Documentation

Code Examples

Practical code examples demonstrating how to implement safety features with the Akioudai Safety SDK

Overview

This page provides practical, ready-to-use code examples for implementing the Akioudai Safety SDK in various scenarios. Each example includes annotations explaining key concepts and best practices.

Example Structure

Each example is structured to be:

  • Self-contained and ready to integrate
  • Annotated with key concepts
  • Optimized for production use cases
  • Adaptable to specific requirements

Safety Guardrails Examples

These examples demonstrate how to implement robust safety boundaries and monitoring for AI outputs.

Content Filtering

This example shows how to filter user-generated content for safety issues before processing it with your AI model:

Content Filtering Example
1import { SafetyGuard } from '@akioudai/safety-sdk';
2
3// Initialize the safety guard with content filtering
4const guard = new SafetyGuard({
5 apiKey: process.env.AKIOUDAI_API_KEY,
6 boundaries: ['toxicity', 'hate', 'sexual', 'violence'],
7 threshold: 0.85,
8 mode: 'filter' // 'filter', 'block', or 'monitor'
9});
10
11async function filterUserContent(content) {
12 try {
13 // Apply content filtering
14 const result = await guard.filter(content, {
15 context: {
16 audience: 'general',
17 domain: 'customer-service'
18 }
19 });
20
21 // Check if content was modified
22 if (result.modified) {
23 console.log('Content was filtered for safety');
24 console.log('Original:', content);
25 console.log('Filtered:', result.filteredContent);
26 console.log('Issues:', result.issues);
27
28 return {
29 content: result.filteredContent,
30 safe: true,
31 modified: true,
32 issues: result.issues
33 };
34 }
35
36 return {
37 content: content,
38 safe: true,
39 modified: false
40 };
41 } catch (error) {
42 console.error('Error filtering content:', error);
43 return {
44 content: 'I cannot process this content due to safety concerns.',
45 safe: false,
46 error: error.message
47 };
48 }
49}
50
51// Example usage
52const userMessage = "Your message here";
53const filteredResult = await filterUserContent(userMessage);
54displayMessage(filteredResult.content);
javascript

Implementation Notes

  • Configure different boundaries based on your content policies
  • Adjust the threshold to balance between strictness and usability
  • Context information helps improve filtering accuracy

Toxicity Detection

This example implements real-time toxicity monitoring for a chat application:

Toxicity Detection Example
1import { SafetyGuard } from '@akioudai/safety-sdk';
2
3// Initialize with toxicity detection focus
4const toxicityDetector = new SafetyGuard({
5 apiKey: process.env.AKIOUDAI_API_KEY,
6 boundaries: ['toxicity'],
7 threshold: 0.75,
8 mode: 'monitor'
9});
10
11// Create a monitoring function
12async function monitorForToxicity(conversation) {
13 const messages = conversation.getMessages();
14 const lastMessage = messages[messages.length - 1];
15
16 // Skip if not from user
17 if (lastMessage.role !== 'user') return;
18
19 const result = await toxicityDetector.monitor(lastMessage.content, {
20 realtime: true,
21 context: {
22 conversationHistory: messages.slice(0, -1).map(m => ({
23 role: m.role,
24 content: m.content
25 }))
26 }
27 });
28
29 if (!result.safe) {
30 // Handle toxic content
31 conversation.addSystemMessage(
32 "I've detected potentially harmful content. Please maintain respectful communication."
33 );
34
35 // Log the incident
36 logSafetyIncident({
37 type: 'toxicity',
38 score: result.score,
39 message: lastMessage.content,
40 timestamp: new Date()
41 });
42
43 // For severe violations, take additional action
44 if (result.score > 0.9) {
45 notifyModerators({
46 conversationId: conversation.id,
47 messageId: lastMessage.id,
48 violation: result.violations[0]
49 });
50 }
51 }
52}
53
54// Set up monitoring on a chat interface
55chatInterface.on('message', message => {
56 monitorForToxicity(chatInterface.conversation);
57});
javascript

Implementation Notes

  • Providing conversation history improves contextual understanding
  • Implement graduated responses based on severity
  • Always log safety incidents for review and improvement

Agent Alignment Examples

Examples showing how to align AI agent behavior with specific objectives and regulatory requirements.

Custom Alignment for Regulated Industries

This example demonstrates how to align an AI agent for use in the financial services industry:

Financial Services Alignment Example
1import { AgentAlignment } from '@akioudai/safety-sdk';
2
3// Define custom alignment objectives for a financial advisor agent
4const financialAdvisorAlignment = new AgentAlignment({
5 apiKey: process.env.AKIOUDAI_API_KEY,
6 objectives: [
7 'regulatory_compliance',
8 'factual_accuracy',
9 'fiduciary_responsibility',
10 'risk_disclosure'
11 ],
12 frameworks: ['sec_regulations', 'finra_guidelines'],
13 threshold: 0.98
14});
15
16// Custom regulatory dictionary for finance
17const regulatoryDictionary = {
18 terms: [
19 { term: 'guaranteed returns', alternatives: ['historical performance', 'potential returns'] },
20 { term: 'risk-free', alternatives: ['lower-risk', 'historically stable'] },
21 { term: 'certain profit', alternatives: ['potential growth', 'investment objective'] }
22 ],
23 disclosures: [
24 'Past performance is not indicative of future results',
25 'Investments involve risk and may lose value',
26 'This is not financial advice and should not be construed as such'
27 ]
28};
29
30// Apply alignment to the model
31const alignedModel = await financialAdvisorAlignment.alignAgent(baseModel, {
32 customDictionaries: [regulatoryDictionary],
33 interventions: {
34 onMisalignment: (output, issue) => {
35 // Add appropriate financial disclaimer
36 const disclaimer = regulatoryDictionary.disclosures.find(d =>
37 d.toLowerCase().includes(issue.category.toLowerCase())
38 ) || regulatoryDictionary.disclosures[0];
39
40 return output + "\n\n*Disclaimer: " + disclaimer + "*";
41 }
42 }
43});
44
45// Deploy the aligned financial advisor agent
46const advisor = new FinancialAdvisorAgent({
47 model: alignedModel,
48 name: 'InvestmentAssistant',
49 description: 'SEC-compliant financial information assistant'
50});
51
52// The agent will now maintain compliance with financial regulations
53// when providing information to users
javascript

Implementation Notes

  • Custom dictionaries can enforce industry-specific terminology
  • Intervention handlers enable automatic compliance corrections
  • Alignment objectives should reflect regulatory priorities

Runtime Validation Examples

Examples of validating AI behavior during execution to ensure compliance with safety parameters.

Continuous Monitoring

This example shows how to implement continuous runtime validation for an AI service:

Continuous Monitoring Example
1import { RuntimeValidator } from '@akioudai/safety-sdk';
2
3// Initialize runtime validator for continuous monitoring
4const validator = new RuntimeValidator({
5 apiKey: process.env.AKIOUDAI_API_KEY,
6 checkpoints: ['input', 'processing', 'output'],
7 metrics: ['consistency', 'safety', 'performance'],
8 threshold: 0.9
9});
10
11// Create a monitoring wrapper for an AI service
12function createMonitoredService(aiService) {
13 return {
14 async process(input, options) {
15 // Create execution context for validation
16 const execution = {
17 id: generateUniqueId(),
18 startTime: Date.now(),
19 input: input,
20 model: aiService.modelInfo,
21 parameters: options,
22 output: null
23 };
24
25 try {
26 // Start validation
27 validator.startValidation(execution);
28
29 // Process input with safe default parameters
30 const safeOptions = validator.getSafeParameters(options);
31 let output = await aiService.process(input, safeOptions);
32
33 // Add output to execution context
34 execution.output = output;
35 execution.endTime = Date.now();
36
37 // Validate output
38 const validationResult = await validator.validate(execution, {
39 realtime: true,
40 callbacks: {
41 onViolation: (issue) => {
42 console.warn('Validation issue detected:', issue);
43 logIssue(execution.id, issue);
44 }
45 }
46 });
47
48 // Handle validation results
49 if (!validationResult.valid) {
50 // Apply automatic corrections if possible
51 if (validationResult.corrections) {
52 output = validationResult.corrections.output || output;
53 }
54
55 // For critical issues, block output
56 if (validationResult.critical) {
57 throw new Error('Critical validation failure: ' +
58 validationResult.issues.map(i => i.description).join(', '));
59 }
60 }
61
62 return {
63 result: output,
64 validationStatus: validationResult.valid ? 'passed' : 'issues',
65 metrics: validationResult.metrics
66 };
67 } catch (error) {
68 // Log error and execution context
69 execution.error = error.message;
70 execution.endTime = Date.now();
71
72 // Complete validation with error
73 validator.completeValidation(execution, 'error');
74
75 throw error;
76 }
77 }
78 };
79}
80
81// Example usage
82const secureImageGenerator = createMonitoredService(imageGenerationService);
83const result = await secureImageGenerator.process(
84 "Generate an image of a peaceful mountain landscape",
85 { width: 1024, height: 768, style: "photorealistic" }
86);
javascript

Implementation Notes

  • Validation at multiple checkpoints provides comprehensive safety coverage
  • Include detailed execution context for better validation accuracy
  • Implement graduated responses based on issue severity

Regulatory Compliance Examples

Examples of implementing specific regulatory compliance requirements for AI systems.

EU AI Act Compliance

This example demonstrates how to implement EU AI Act compliance for a high-risk AI system:

EU AI Act Compliance Example
1import { ComplianceFramework } from '@akioudai/safety-sdk';
2
3// Initialize EU AI Act compliance framework
4const euAiAct = new ComplianceFramework({
5 apiKey: process.env.AKIOUDAI_API_KEY,
6 framework: 'eu_ai_act',
7 riskCategory: 'high', // 'minimal', 'limited', 'high', 'unacceptable'
8 domain: 'healthcare' // Specify the industry domain
9});
10
11// Set up documentation requirements for high-risk systems
12const documentationGenerator = euAiAct.createDocumentationGenerator({
13 system: {
14 name: 'DiagnosisAssistant',
15 version: '1.0.4',
16 purpose: 'Supporting clinical diagnosis by analyzing patient data',
17 capabilities: ['data analysis', 'pattern recognition', 'decision support'],
18 limitations: ['not a replacement for professional judgment',
19 'requires human oversight']
20 },
21 organization: {
22 name: 'Medical AI Solutions',
23 contact: 'compliance@medicalai.example',
24 address: '123 Innovation Drive, Brussels, Belgium'
25 }
26});
27
28// Generate required technical documentation
29const technicalDocs = await documentationGenerator.generateTechnicalDocumentation();
30console.log('Technical Documentation Sections:', Object.keys(technicalDocs));
31
32// Perform risk assessment
33const riskAssessment = await euAiAct.performRiskAssessment({
34 dataDescription: 'Patient health records, medical imaging, lab results',
35 dataSources: ['electronic health records', 'radiology information systems'],
36 dataRetention: '5 years in compliance with medical records requirements',
37 securityMeasures: ['end-to-end encryption', 'access controls', 'audit logs']
38});
39
40// Output risk findings and mitigations
41for (const risk of riskAssessment.risks) {
42 console.log(`Risk: ${risk.description}`);
43 console.log(`Severity: ${risk.severity}`);
44 console.log(`Mitigations: ${risk.mitigations.join(', ')}`);
45 console.log('---');
46}
47
48// Create conformity assessment checklist
49const conformityChecklist = await euAiAct.generateConformityChecklist();
50console.log(`Completed: ${conformityChecklist.completedItems.length} of ${conformityChecklist.totalItems}`);
51
52// Missing requirements
53if (conformityChecklist.missingItems.length > 0) {
54 console.log('Missing requirements:');
55 for (const item of conformityChecklist.missingItems) {
56 console.log(`- ${item.requirement}: ${item.description}`);
57 }
58}
59
60// Generate official declaration of conformity when ready
61if (conformityChecklist.readyForDeclaration) {
62 const declaration = await euAiAct.generateDeclarationOfConformity();
63 fs.writeFileSync('eu_ai_act_declaration.pdf', declaration.pdf);
64 console.log('Declaration of Conformity generated successfully');
65}
javascript

Implementation Notes

  • Risk categorization determines compliance requirements
  • Comprehensive documentation is mandatory for high-risk systems
  • Risk assessment and mitigation are core requirements
  • Conformity assessment must be completed before deployment

Additional Resources

Example Repository

Access our GitHub repository with more extensive examples and full applications.

View repository

Industry Templates

Download industry-specific SDK implementation templates.

Download templates